
EVALUATION OF SUPER-TSD NETWORK-ANALYZER CALIBRATION PROGRAMS
BY COMPUTERSIMULATION

Ross A. Speciale
TRW Defense and Satellite System Group

Redondo Beach, California 90278

ABSTRACT

Two Fortran programs, which implement the SUPER-TSD calibration method for automated network analyzers, have
been written for the conventional case of two-port scattering parameter measurements. These SUPER-TSD error-
computation and error-removal programs are being evaluated by using computer-generated simulated calibration data
representing known system errors, including leakage and switching errors. The results obtained so far confirm
all the predictions of the SUPER-TSD theory, including the theoretically unlimited capability of removing leakage
errors. This capability is limited in real measurements only by the finite system resolution and stability and
by noise.

Introduction

The recently introduced SUPER-TSD methodl’2 for
the calibration of automated network analyzers differs
from the original TSD method3’4 in two respects:

1. The SUPER-TSD error model accounts for pos-
sible leakage errors.

2. The SUPER-TSD error model is generalized to
cover N-port scattering parameter measure-
ments.

Two Fortran programs, which implement this new
calibration method, have already been written for the
fundamental case of two-p6rt scattering parameter
measurements.

In this particular case, N = 2 and the error
model reduces to a virtual four-port error network EN

having ports 1 and 2 connected to the ANA and ports 3
and 4 connected to the device under test X (Figs. la/lb)
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In the absence of leakage errors, the four-port
error network EN reduces to the TSD error model

consisting of two error two-ports A and B (Fig. lb).
The first SUPER-TSD Fortran program accepts as

input data the measured scattering parameters of three
two-port standards and computes the scattering response
of the virtual four-port error network in terms of any
or all of three 4x4 complex matrices.z

These matrices are:
1. The T-parameter matrix T.

2. The inverse R = T
-1

of the T-parameter
matrix T.

3. The scattering matrix S.

The two-port standards assumed to be used are the
same as for the original TSD method: a “Through,” a
“Short,” and a “Delay.” The “Through” and the “Delay”
are known lengths of lossless transmission line with
nominal impedance replacing the unknown X. The “short”
is a pair of perfect shorts connected at ports 3 and 4.

The second SUPER-TSD Fortran program accepts as
input data the inverse R of the T-matrix of the
virtual error network E and the uncorrected scatter-

N
ing parameters SM of a device under test as measured
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N: L--II by the ANA. “It then computes the corrected scattering
—— parameters S, of this device by deembedding the error-
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Figure la. The SUPER-TSD error model is a virtual 2N-
port error network assumed to be connected between the
unknown n-port X and an ideal n-port ANA.
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Reduced SUPER-TSD error model for two-port
measurements: Dashed, inside the four-port EN is the

zero-leakage TSD error model consisting of the “error
two-ports” A and B. @
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network resp;nse.
These two SUPER-TSD Droarams are being tested and

evaluated by computer simula~ion. The simulation is
performed by assuming the virtual error network to
have a known equivalent circuit, including leakage
paths between ports 1 and 2, 3 and 4, 1 and 4, and 2
and 3. The measured scattering parameter matrices
sMi of the three two-port standards and SM of a known

two-port network, representing the device under test,
are then computed using a network analysis program.
These scattering parameter matrices are then used as
simulated calibration data and simulated uncalibrated
measurements for the SUPER-TSD error-computation and
error-removal programs, respectively.

The evaluation of the two programs is then per-
formed by a quantitative comparison between the cor-
rected scattering parameters of the device under test
as obtained from these programs and the theoretical
scattering parameters of the known two-port network
assumed to represent it. This theoretical response is
computed from the netwark configuration and parameter
values.

2. The EJJPER-TSD Error-computation Program

The explicit matricial solutions for the

T-parameter matrix T and its inverse R = T-l, imple-
mented in the SUPER-TSD error-computation program, are
expressed in terms of the “Reshuffle” RS(..) and the
“Stacking” S(..) operators, respectively, of their
four quadrants:



RS(T4) = Complex Column Vector of order N2 (N = 2) (1)

RS(TI) = PI.RS(T4) = [(B2$1 - D2C;1)[E2A;1 - F2C;1)-l]T. RS(T4) (2)

RS(T2) = P2. RS(T4) = [[ A3B;1 - C3D;1)(E3B;1 - F3D2 )
!

‘1 ‘1 ‘. RS(T4) (3)

RS(T3) = P3. RS(T4) = - (B2E;1 - D2F;1)(A2E;1 - CZF2 ) 1‘1‘1‘. RS(T4) (4)

S(R1) = Complex Column Vector of Order N2 (N = 2) [5)

S(R2) = Q1.s(Rl) = -(B;1E3 - @3) ‘*. (B;1A3 - D;1C3). S(R1) (6)

S(R3) = Q2. S(R1) = (E;1A2 - F;1C2) ‘1. (E;1B2- F;1D2). S(R1) (7)

S(R4) = Q3. S(R1) = (A;1E2 - C;1F2) ‘1. (A;1B2 - C;1D2). S(R1) (8)

where the ten N2 x N* auxiliary matrices A2, B2. ..F2,

‘3
. ..F3 are expressed by differences of Kronecker

tensor products:

A2 = (S~@SSJ - (S~2@SS2) (9)

(lo)B2= (S@I) - ($!@I)

C2= (sjl(!m~l) - (s~3@ss3) (11)

D2= (S~l@I)

E2= (I@SS1)

F2 = (I@&c-)

A3 = (S~l@S~

C3 = (SJ1(XJS;

E3 = (I@ S~; )

F3= (I&)

- (sj3@I) (12)

- (I@JSS2) (13)

- (I@ Ss3) (14)

) - (s~2t m;;) (15)

) - (s@;;) (16)

- (I@ S;;) (17)

- (I@S~~) (18)

Here I is the unit matrix and the superscript T indi-
cates matrix transposition.

‘he ‘Mi
and SSi N x N matrices appearing in the

Kronecker products are the measured and the postulated
scattering matrices of the three two-port calibration
standards, respectively. In the program, standard #1
is a “Through”; #2, a “Short”; and #3, a “Delay.”2

Mathematical proof has been found of the arbi-
trariness of the T4 and RI matrix quadrants, with the

only restriction being nonsingularity. This arbitrar-
iness has also been confirmed numerically by running
the error-computation program with alternative defin-
itions of these quadrants. These lead to mutually
equivalent T and R matrices, all of which transform a
given object S-matrix Sx into the same measured S-matrix

SM (for T) or a given SM into the same Sx (fOr R).

The S-matrix of the error network is computed
only upon operator’s choice, for the sake of visual-
izing the system’s errors in a familiar form of rep-
resentation. The S-matrix may be computed from
either the T-matrix or the R-matrix using the ex-
pressions:

TT-l IT
s. __2_4_t _l_-_TzT11:3_ (19)

T~ 1
1-

T;1T3

-1 [ R-l

s= –––-!l–R?– ‘+-L-7 (20)

R4 - ‘3 Ri1R2 I ‘3R1

3. The SUPER-TSD Error-removal Program

The deconvolution of the error-network response
from the measured scattering matrix SM is performed

through a fractional bilinear transformation in
matrix form using the quadrants of the R-matrix:

-1
sx= (R1.SN+ R2)(R3.SM+R4) (21)

The SUPER-TSD error-removal program actually may, upon
operator’s choice, perform the corresponding inverse
transformation:

-1
SM = (T1.SX +T2)(T3.SX +T4) (22)

This is easily accomplished due to the formal identity
of (21) and (22).

The transformation (21) is referred to as “de-
embedment” as opposed to (22), which is called “em-
bedment.”

4. Results of Program Evaluations

Two different networks have been used as the
postulated device under test in the evaluation of the
SUPER-TSD programs:

1. A nonsymmetric resistive “T” pad designed to

‘ave ’11 = -0”5’ S*2 = 0“25’ and S12 =

’21
= 0.125 (-6dB, -12 dB, and -18dB,

respectively).
2. A lumped-element, five-resonator Tchebicheff

filter with a 0.5-dB ripple from 2 to 4 GHz
and a steep response skirt on either side.

A first test was run upon a situation that had
already been used in a similar evaluation of TSD
programs. In this situation, the four-port error
network $ reduces to two error two-ports A and B, and

there is no leakage (Fig. lb). The assumed error two-
ports are 100-ohm quarter-wave transformers with
short, 50-ohm and 200-ohm lines on either sides

The calibration was assumed to be performed using
a 20-ps, 200-ohm line for the “Through” and a 1OO-PS
200-ohm line for the “Delay,” plus perfect “Shorts.”
The device under test was a 6-12-18 dB nonsymmetric
“T” pad designed for 200-ohm impedance level. This
zero leakage test proved two facts:

1. All quadrants of the T and R matrices are,
in this case, diagonal as theoretically
predicted. Rounding off errors prevented
the off-diagonal entries from being flat
zero. These entries, however, were below
-150 dB.

2. The T and R matrices obtained are both
normalized to 200 ohms at ports 3 and 4, the
calibration interfaces, as a consequence of
using 200-ohm lines in the “Through” and
“Delay” calibration measurements.

This means that, in this case, after deembedment
the obtained SX scattering matrix of the device under

test is normalized to 200 ohms, the impedance of the
standards used. By recomcwtincl the resistance values
of the pad from th; reconstruc~ed SX matrix, devia-

tions were observed with respect to the originally
assumed values. These are in the order of one part

106.
Three different tests were run by assuming the

four-port error network to be represented by a 3-dB
hybrid connected in either of two different ways
between the ideal ANA and the device under test. A

50-ohm 6-12-18 dB resistive pad and a Tchebicheff
filter were assumed as device under test.

in

Depending upon how the hybrid is connected, eight
zero entries at3r3ear in different locations of the T
and R matrices;” but four non-zero leakage entries are
always present.
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Figure 2. Simulated measuremefit of a bandpass filter

against massive leakage errors.

The most representative result has been obtained
from the situation shown in Fig. 2 Here the five-
resonator Tchebicheff filter is assumed to be measured
through the 3-dB hybrid, while this introduces a
leakage signal of -3 dB that massively overshadows the
filter skirt response.

Figs. 3 and 4 illustrate the almost incredible
result obtained. The curve labeled R (raw data) in
Fig. 3 is the response of the filter as seen from the
ANA through the 3-dB hybrid. The curve labeled C
(corrected data) shows the response of the filter as
reconstructed through deembedment down to a skirt
response of -170 dB. Fig. 4 shows how this recon-
structed response is for all practical purposes
indistinguishable from the theoretical response of the
filter (second curve, dashed, and labeled T). This
means a leakage error, occasionally 150 dB above the
device response, has been accurately removed.
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Figure 3. Results of the
shown in Fig. 2: R = raw
response.
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Figure 4. The corrected filter response is indis-
tinguishable from its theoretical response: C = cor-
rected data, T = theoretical response.

It becomes then worthwhile to redesign existing
ANA hardware for largely improved stability and reso-
lution, as these will be the only factors limiting
this capability in practice.

Conclusion

Results obtained so far prove a fast and correct
execution of both programs without incurring any
matrix singularity problems at any point of the mathe-
matical process. Typical running time is 20 seconds
for 200 frequency points on a CDC 6600. In particular,
the theoretically unlimited capability of removing
leakage errors has been numerically confirmed. Full
details of this evaluation will be given in the trans-

action paper.
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